
A Unifying Framework for Systems Modeling,
Control Systems Design, and System Operation

Daniel L. Dvorak, Mark B. Indictor, Michel D. Ingham,

Robert D. Rasmussen, Margaret V. Stringfellow
Systems & Software Division

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA, USA
{daniel.l.dvorak, mark.b.indictor, michel.d.ingham, robert.d.rasmussen, margaret.v.stringfellow}@jpl.nasa.gov

Abstract – Current engineering practice in the analysis
and design of large-scale multi-disciplinary control
systems is typified by some form of decomposition—
whether functional or physical or discipline-based—that
enables multiple teams to work in parallel and in relative
isolation. Too often, the resulting system after integration
is an awkward marriage of different control and data
mechanisms with poor end-to-end accountability. System of
systems engineering, which faces this problem on a large
scale, cries out for a unifying framework to guide analysis,
design, and operation. This paper describes such a
framework for semi-autonomous control systems that
guides analysis and modeling, shapes control system
software design, and directly specifies operational intent.
This paper illustrates the key concepts in the context of a
large-scale, concurrent, globally distributed system of
systems: NASA’s proposed array-based Deep Space
Network.

Keywords: Systems modeling, control architecture,
software design, human/machine systems.

1 Introduction
 The size and complexity of many systems being built
for government, industry, and the military have reached a
threshold where customary methods of analysis, design,
implementation, and operation are no longer sufficiently
reliable. Many of these large systems are properly
described as “systems of systems” in that they are
composed of many systems—often built by multiple
suppliers—that must operate in a coordinated manner. The
challenge of coordinated control almost always falls to
software. Unfortunately, there is a fundamental gap
between the requirements on software, as specified by
systems engineers, and the implementation of those
requirements by software engineers. Software engineers
must perform the translation of requirements into software
design and into code, trying to capture the systems
engineer’s understanding of system behavior, which is not
always explicitly specified. This gap can lead to serious
flaws in the implemented system, some of which may
manifest at the most inopportune times.

 The twin problems of errors of omission and errors of
interpretation are exacerbated in a system of systems
simply because the opportunities for error grow with the
number of system-to-system interactions that must be
specified by systems engineers. They also grow with the
number of different ‘mindsets’ about control mechanisms
that different teams bring to the table, often based on
reusable or legacy software.

 Another challenge in the validation of any complex
software system is that much of what transpires in software
design and development is opaque to systems engineers. It
is nigh impossible for a systems engineer to obtain a
description of the software design that is simultaneously
faithful to the software as built and expressed in terms
directly related to the requirements. Too often, software
designs presented at reviews are box-and-line diagrams that
amount to an appealing fiction; they present an idealized
design that fails to reveal important interactions built into
the software.

 This paper describes a systems engineering
methodology called State Analysis [2], intended for
application to autonomous and semi-autonomous control
systems. State Analysis asserts four basic principles:

 Control subsumes all aspects of system operation. It
can be understood and exercised intelligently only
through models of the system under control, so a clear
distinction must be made between the control system
and the system under control.

 Models of the system under control must be explicitly
identified and used in a way that assures consensus
among systems engineers.

 Models of the system under control must be expressed
in terms of physical state variables. Everything we
need to know and everything we need to do can be
expressed in terms of the state of the system under
control.

 As complexity grows, the line between specifying
behavior and designing behavior is blurring. The
software design must reflect the systems engineer’s

understanding, so the manner in which models inform
software design and operation should be direct,
requiring minimal translation.

 As Figure 1 depicts, this methodology addresses the
triad of system analysis, software design, and operational
control. These three aspects of a system must be mutually
consistent to achieve a reliable and understandable end
product. The unifying principles for these three aspects
form the foundation of a model-based and state variable-
based control architecture for systems of systems. This
paper illustrates the application of State Analysis and the
control architecture in the context of globally distributed,
concurrent control system.

2 The Deep Space Array Network
 This paper examines NASA’s proposed Deep Space
Array Network (DSAN) as a case study in system of
systems engineering. DSAN is designed to be the next-
generation network of Earth-based antennas that provide
communication services to NASA’s deep space missions of
exploration [4]. According to current plans, the network
will contain 1200 12-meter receive antennas, divided
equally among three longitudes (“regions”) in order to
maintain tracking as the Earth rotates. As the name implies,
DSAN employs sophisticated digital signal processing to
combine signals from an array of antennas in order to
achieve the effective aperture of a much larger antenna.
With 400 antennas at each of the three regions, numerous
target spacecraft can be tracked concurrently by allocating
groups of antennas to each target and routing their signals
appropriately through the signal processing system.

 DSAN is a system of systems in that it is composed of
multiple complex systems, is geographically distributed,
and must be coordinated and controlled as a single system.
Kotov’s definition [1] is particularly apt: “Systems of
systems are large scale concurrent and distributed systems
that are comprised of complex systems.” DSAN is
comprised of several complex systems including: the
receive array; transmit array; large transmit/receive array;
telemetry, ranging, and command processing; very long
baseline interferometry processing; frequency and timing;
and monitor & control. This paper focuses on monitoring &
control for the receive array.

 There are three levels of automated monitoring &
control within DSAN. At the lowest level, closest to the
hardware, hard real-time control loops read sensors and
command actuators to do things such as pointing the
antennas, configuring the signal flow and signal processing,
and constantly monitoring for anomalies. At the next level
up—the regional level—the job is to allocate and manage
all the resources, including the 400 antennas of the receive
array at each region, in the service of customer requests for
spacecraft tracking. The regional level must respond to
faults in real time, such as quickly replacing a failed
antenna in an active array. The final level of monitoring &
control is at DSAN Central. This top level assigns work to
each of the three regions, based in part on what regions
have a spacecraft’s signal “in view” at the time its signal is
reaching Earth. As with regional control, central control
must react in real time to anomalies reported by each
region. For example, DSAN Central could direct the
Australian region to start tracking a spacecraft earlier than
expected if a failure occurs in the California region.

3 State Analysis
 State Analysis is a systems engineering process for the
problem domain of autonomous and semi-autonomous
control systems. It is a comprehensive process in that it
addresses analysis of the system to be controlled, design of
the control system, and operation of the control system.
Compared to more conventional systems engineering
processes, it demands more up-front analysis and it
represents its results in a more structured form. Its main
benefit is more reliable systems due to fewer errors of
omission, fewer errors of translation into software, and
more easily understood operational controls. It also enables
more accurate cost estimation because there is a much more
direct mapping from analysis artifacts to units of work. A
detailed presentation of the State Analysis methodology is
found in reference [2]. In this paper, we introduce the
fundamental architectural concepts of the approach, and
describe its application to the DSAN system of systems.

It’s important to note that State Analysis is not primarily
about statecharts, though they may be employed to model
behavior of discrete-event finite-state portions of a system
under control. Rather, the word “state” in State Analysis is

System operations scenario

Analysis of
system under control

Control system
software

Goal elaborations
for operations

Physics model of
system under control

guides

produces

informs informs

operates

Figure 1. State Analysis provides a unified approach
to system analysis, control system software design,
and system operation.

meant to elevate the role of physical state variables in
analysis and modeling and design to be first-class
architectural citizens. This emphasis on physical state
variables pays big dividends not only in relating
requirements and operations directly to the system under
control but also in shaping control system design. Physical
state variables can be discrete-valued or continuous-valued
and can include any physical quantity.

3.1 Architectural Concepts
 To understand State Analysis, it is important to
understand a few architectural features that shape it, as
depicted in Figure 2. First, there is a clear distinction
between the control system and the system under control
because control can only be understood and exercised
intelligently through models of the system under control.
Second, state variables of the system under control are
explicit since it is the values of those state variables that the
control system is designed to control. Third, models of how
the system under control behaves are documented explicitly
because they are needed by the control system for
execution (estimating and controlling state) and higher-
level planning (e.g. resource management). Fourth, state
estimation is separate from state control because separation
promotes objective assessment of system state and ensures
consistent use of state across the control system. Fifth,
hardware adapters provide the sole interface between the
control system and the system under control, with all
interactions in the form of commands to and measurements

from the system under control. Sixth, the architecture
emphasizes goal-directed closed-loop operation because
goals, as constraints on the values of state variables over
time intervals, directly express operational intent. Finally,
the architecture provides a straightforward mapping into
software because the aforementioned architectural concepts
(state variables, models, estimators, controller,
measurements, commands, goals) are represented directly
in software.

3.2 Modeling of the System Under Control
 As a systems engineering process, State Analysis is a
gradual discovery process that is incremental in nature, and
each increment can expand the analysis in terms of scope
or detail, or both. The process is all about understanding
and modeling the system under control since the control
system needs such models. The first steps of the process
are: (1) identify the state variables of the system under
control that must be monitored and/or controlled; (2)
identify the direct effects of one state variable on another
(state-to-state effects); (3) identify the measurements that
provide evidence about the values of state variables (state-
to-measurement effects); and (4) identify the commands
that affect the state variables (command-to-state effects).
All of these state variables, measurements, commands, and
influences are captured in a “physics model”, so named
because it captures the physics of the system under control.

 Figure 3 provides an overview of a portion of the
physics model centered around a state variable for the
operational mode and health of an antenna mechanical
system. The incoming arrows to that state variable show
that its value is affected by facility power (another state
variable) and mechanical mode commands. The outgoing
arrows show that the value of this state variable affects the
received signal (another state variable) as well as four

Models

Planning & Execution

State
Knowledge

State
Estimation

State
Control

State
Functions

Knowledge Goals Control Goals

State
Values

Control System

Hardware Adapter

Commands Measurements
& Commands

System Under Control

Figure 2. Architecturally, State Analysis emphasizes
a clear distinction between the control system and
the system under control, with explicit representation
of state variables and behavioral models.

Legend
: = state variable

 = measurement

 = command

Figure 3. This view of the physics model shows what
affects what among the state variables, commands, and
measurements of the antenna mechanical system.

Cmd:
Mech.

OpMode

Antenna
Power

Antenna
Mechanical

OpMode & Health

Msmt:
Antenna
Pointing

Msmt:
Motor

Current

Msmt:
Mech.

OpMode

Msmt:
Antenna

Mech. Power

measurements (antenna pointing, motor current,
mechanical operating mode, and antenna mechanical
power).

 Figure 4 shows a statechart (a behavioral model) that
expresses behaviors of the system under control related to
an antenna’s operating mode and health. Specifically, it
shows how the power state and mode commands affect the
antenna operational mode and how different measurements
provide evidence about the value of that state variable.
Although this example employs a statechart, in principle a
model can be described in a variety of ways including
equations, tables, pseudo-code, and text. The key
requirement is that the model must unambiguously specify
behavior, i.e. how the system under control works.

 As is always true in systems engineering, the level of
detail that a system engineer decides to capture in a physics
model should be driven by need. The model should make
explicit all the effects and behaviors of the system under

control that must be known to properly control it. Effects
that are present but considered insignificant should be so
noted so that such assumptions are recorded and
reviewable. Importantly, the graphical representation of a
physics model shold be easy to review with domain experts
and other systems engineers. Graphical representations, as
shown in Figures 3 and 4, are particularly appropriate.

3.3 Control System Software Design
 An important aspect of the architectural concepts
outlined in section 3.1 is that the same concepts of states
and models that shape the State Analysis process also shape
the reference architecture for the software. The right-hand
side of Figure 5 shows a UML collaboration diagram that
mirrors the architectural concepts depicted in Figure 2.
Figure 5 presents a control loop pattern for the antenna
mechanical op mode and health. In this pattern an estimator
repeatedly reads measurements and commands from the
system under control, interprets them with respect to

Tracking

On point

Off point

On-pnt
msmt

Off-pnt
msmt

Offline &
not ready

Offline &
ready

Shutdown Stowing

Idle

Msmt: “repaired”

Cmd: go online Cmd: go offline

Power off
Power off

Power off

Power on Begin
tracking

End of profile
or go-idle

Stowed
or go-idle

Stow

Healthy

Unhealthy

high
motor

current

motor
repaired

Figure 4. Statechart model for antenna mechanical system.

Cmd:
Mech.

OpMode

Figure 5. The physics model (shown on the left) directly informs the software design (shown on the right).
The physics model elements (state variables, measurements, and commands) and the models behind them
(state, measurement, and command effects models) all map into the software design.

Antenna
Power

Antenna
Mechanical

OpMode & Health

Msmt:
Antenna
Pointing

Msmt:
Motor

Current

Msmt:
Mech.

OpMode

Msmt:
Antenna

Mech. Power

State Variable:
Ant. Mech.

OpMode & Health

Hardware Adapter:
Antenna Mechanical System

Controller:
Ant. Mech.
OpMode &

Health

Estimator:
Ant. Mech.
OpMode &

Health

readMeasurements
readCommands sendCommand

updateState getState

Control
goal

Knowledge
goal

measurement models and command models (part of the
physics model), and updates the current estimated state. A
controller repeatedly compares estimated state to desired
state (represented in a control goal), and issues commands,
as appropriate, to the system under control. The decision of
what command to issue, if any, depends on the command
effects model (also part of the physics model).

 As Figure 5 shows, there is a direct mapping between
elements in the physics model and elements in the software
design. For every state variable in the physics model there
is a state variable component in the collaboration diagram.
For every state variable there is exactly one estimator, and
its job is to interpret all evidence about the state (the value)
of the state variable. The specific kinds of evidence are all
identified in the physics model. For example, every
measurement in the physics model that is affected by the
physical state known as Antenna Mechanical OpMode &
Health becomes input to its estimator component.
Similarly, commands and physical states that affect the
state of the state variable also become inputs to the
estimator. Although not shown in this example, an
estimator may also use the value of an affected state
variables as evidence. In all cases, the estimator uses
information in the physics model (state-to-state effects,
state-to-measurement effects, and command-to-state
effects) to properly interpret all the evidence.

 A similar mapping exists for controllers. For every
controllable state variable in the physics model there is
exactly one controller, and its job is to issue commands, as
needed, to achieve a desired state, as expressed in a control
goal. A goal is defined as a constraint on the values of a
state variable over a time interval, so a controller’s job is to
try to keep the constraint satisfied by influencing the
physical state of the system under control. In general, a
controller may issue more than one kind of command to
more than one kind of subsystem, but only if those
commands affect the controlled state variable, as identified
in the physics model. Estimators take into account the

predict effects of an issued command by getting a copy of
the issued command, plus its timestamp, from the system
under control.

 The key point here is that the direct mapping of
analysis artifacts to software design eliminates many
opportunities for error. Compared to “shall” statements,
these analysis artifacts are highly structured and
unambiguous. Using framework software elements that
mirror the analysis artifacts, software engineers make far
fewer errors of interpretation, and the system as built bears
a direct resemblance to the analysis artifacts.

3.4 Goal Elaborations for Operations
 The preceding section showed how a portion of a
physics model informed the software design for a single
control loop. Each individual control loop is controlled by a
pair of goals: a control goal for the controller and a
knowledge goal for the estimator. In simple terms, a
control goal specifies a desired state (or desired state
history) and a knowledge goal specifies a required quality
of knowledge about estimated states. For example, in the
control loop for antenna mechanical operating mode and
health, a control goal might specify that the antenna is
healthy and that the antenna system is tracking and on-
point. A corresponding knowledge goal might specify that
antenna operating mode and health is known with high
confidence. Goals provide an excellent basis for operations
because they directly specify intent (i.e. “what” rather than
“how”) and because they are checkable during operation (a
goal is said to “fail” if its constraint is violated).

 In any real system there are many state variables,
often numbering in the thousands, and so there is a need to
coordinate hundreds or thousands of control loops. In our
architecture such coordination is accomplished via a goal
network. A goal network typically begins with the
specification of a few high-level goals and then expands
through a process of goal elaboration and scheduling. Goal

Figure 6. Goal elaborations are the building blocks for operation of the control system. A parent goal specifies a
constraint on state to be satisfied during a time interval, denoted by starting and ending time-points. The
elaboration specifies required subgoals, as directly informed by state-to-state effects in the physics model.

Antenna Power:
Is Known and Powered

Ant Mech OpMode & Health:
Healthy, Tracking & On-point

Ant Mech OpMode & Health:
Is Known

Parent goal

Child goals (subgoals) from first
level elaboration

Time-point

Ant Mech OpMode & Health:
Is known

Ant Mech OpMode & Health:
Transition to Healthy, Tracking

& On-point

Antenna Power:
Transition to Powered

Grandchild goals from
2nd level elaboration

Goal

elaboration is the process of specifying the child goals
(subgoals) needed to achieve a particular parent goal. For
example, for an antenna mechanical system to be tracking
and on-point (a parent goal), it must have power and its
operational mode must be known (two child goals).

 Interestingly, such goal elaborations are informed by
the same physics model described previously. These
elaborations are constructed by applying four simple rules
to the model: (1) a goal on a state may elaborate to a
control subgoal on an affecting state; (2) a control goal on a
state elaborates to a knowledge goal on the same state; (3) a
knowledge goal on a state may elaborate to knowledge
goals on its affecting and affected states; and (4) a
“maintenance” goal on a state may elaborate to a
“transition” goal on the same state, with an ending time-
point coincident with the starting time-point of the
maintenance goal. Figure 6 depicts the results of applying
these rules to a parent goal that the antenna mechanical op
mode and health state variable be in the state of health,
tracking, and on-point.

 It should be noted that alternative ways of
accomplishing a goal are specified via multiple alternative
goal elaborations, called tactics. Thus, should any of the
supporting goals in an elaboration fail, it becomes possible
to re-elaborate with an alternate tactic to accomplish the
same objective. Context-specific elaboration can be
enabled by conditioning alternative elaboration tactics on
different state constraints.

There is more to the story of goal-based operations that is
beyond the scope of this paper, including additional detail
on the elaboration process (see [2]) and a thorough
explanation of scheduling and executing goal networks (see
[2,5]). The basic idea is that one or a few high-level goals
are specified by operators and then a process of goal
elaboration and scheduling produce a schedule of
operations. In the case of the Deep Space Array Network, a
high-level goal in the form of a mission service request
would start such a process. Such a goal might specify that
the mission customer wants to receive data frames from a
downlink pass from spacecraft x. The elaboration of that
goal would, among other things, use knowledge of the
spacecraft trajectory, modulation format, data rate, and
radiated power to determine how many antennas need to be
arrayed together to receive the data with the level of
certainty specified by the customer.

4 Conclusions
 This paper has shown how the architectural concepts
of state variables, models, and goals provide a unified view
of control that shapes the trinity of system analysis,
software design, and operational control. Analysis is
always about the system under control, not the control
system, and it begins with a discovery process for state
variables, commands, and measurements, plus the models

of behavior that relate them. The software design is always
about the control system, whose job is to monitor and
control specific state variables in the system under control.
To do this it depends on knowledge of how the system
under control works — exactly the same knowledge of
behavior captured in the models. Estimators, controllers,
and planning & execution in the software design all use the
models. Finally, operational control via goal networks is
designed in accord with the physics model, for both
nominal operations and fault responses. Specifically, goal
elaborations and their alternate tactics are employed
directly during system operation to effect coordinated
control of the whole system.

 The important message in this paper is that complex
systems can be built more reliably if a unified approach is
followed. By adopting the State Analysis approach,
elements of the physics model map directly onto software
design, and state-to-state effects directly shape the goal
elaborations. The system as built is no longer opaque to
systems engineers because it now represents the results of
their analysis in a direct, inspectable way.

 As is the case in the Deep Space Array Network, it’s
not necessary that all of the software-based control in a
system of systems be designed and built in the manner
described here. Systems or subsystems implemented using
a different design may be viewed as part of the system
under control and their “black box” behaviors would
therefore be modeled during analysis. For more
information about State Analysis and its underlying
architecture see [2,3,5].

References
[1] V. Kotov, “System of systems as communicating
structures,” Hewlett Packard Computer Systems
Laboratory Paper HPL-97-124, pp. 1-15, 1997.

[2] M.D. Ingham, R.D. Rasmusen, M.B. Bennett, and
A.C. Moncada, “Engineering complex embedded systems
with state analysis and the mission data system,” American
Institute of Aeronautics and Astronautics Conference on
Intelligent Systems, Chicago, Sep. 2004.

[3] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks,
“Software architecture themes in JPL’s mission data
system,” IEEE Aerospace Conference, Big Sky, March
2000.

[4] D.S. Bagri, J.I. Statman, and M.S. Gatti, “Operations
Concept for Array-based Deep Space Network,” IEEE
Aerospace Conference, Big Sky, March 2005.

[5] A. Barrett, R. Knight, R. Morris, and R. Rasmussen,
“Mission Planning and Execution Within the Mission Data
System,” Proceedings of the International Workshop on
Planning and Scheduling for Space, Darmstadt, June 2004.

